EMPIRE XPU Tutorial 3D Design – Biquad Antenna

Overview: Topics

- Start New Project
- 3D structure definition
- Coaxial Port
- N-point Wires
- S-Parameters, impedances
- Far field

Step 1: Start

- Start Empire from Desktop
- Select "New Project"
- Set "Drawing Unit" 1mm
- Set "Stop Frequency"* 5 GHz
- Set "Target Frequency" 2.45 GHz
- OK
- File \rightarrow Save as
- Create new directory "biquad" and save file

🚦 Project Wizard

New Project	Open Project	Examples	Templates
General			
Structure Type:	Standard		
Solvers:	EM		
Drawing Unit:	1	mm 💌	
Frequency			
Stop Frequency:	5	GHz 🔻	
Target Frequency	: 2.45	GHz 💌	
Loss Calculation			
Dielectrics:	lossless		
Conductors:	lossless		

Step 2: Coaxial Feed

- Set grid to y=0
- Click "Create Source"
- Select Coax Tab
 Choose Coax
- Left click at x=0, y=0, z=0 to define feed position (origin)
- Left click at x=0, y=0, z=-50* to define load position
- Left click at dv = -1.5 (du=0) to define the inner coax radius
- Left click at dv = -5 (du=0) to define the dielectric radius

Coordi	nate System: World (xyz)
Grid:	y 🔻 0
Cursor:	Stay on Grid

🗄 Object Editor			? ×
General			
Name:	GANLIB 1		
Group:	#001 (conductor) 👻 🖊 Edit Settings		
Direction:	z 🔻 50.0		
	x	у	z
Base Point	0.0	0.0	-50.0

Comments:

• Use e.g. Page down key to access value

Step 3: Coaxial Feed

Click "Edit Settings" Adjust values: da : 15 (outer coax diameter)	GeometryInnerDiameterdi =3.0DielectricDiameter (>di)dd =10.0OuterDiameter (>dd)da =15Rod length (>=0)1r =4	• • •
Ir: 4 (extension length of inner conductor)	da	
Zoom extents	dd pd (reference	plane)
Jan-20 © IMST GmbH - All rights reserved		G

Step 4: Wire loop

- Set grid to z=3
 Enable ,Stay on grid' snapping
- Click "Create Library Object"
- Select "3D Wire" "3D N-Point "
- Zoom in (2x Page up)
- Left click at x=0,y=0 —
- Height dw=0
- Left click at x=-35,y=0
- Height dw=-1
- Left click at x=-35,y=-35
- Height dw=-2
- Left click at x=0,y=-35 -
- Height dw=-3
- Left click at x=0,y=-7.5
- Height dw=-4
- Long left click to finish
- Optionally adjust points -
- Click "Edit Settings" d=2, OK
- OK

6

Coordinate System: World (xyz)		
Grid:	z 🔻 3	
Cursor: 🗸 Stay on Grid Active Group: #001		

Jan-20 © IMST GmbH - All rights reserved

Comments:

* Zoom in/out to access values

Step 5: Rotate

- Select Top View
 Shift + Left click at x=0,y=0 to enter a point
 Select Loop with left click*
 Click Copy and Rotate
 Enter 180 (degrees)
 OK
 - Return to "Iso-z view"

Step 6: Field Monitor

Jan-20 © IMST GmbH - All rights reserved

Step 7: Mesh

Jan-20 © IMST GmbH - All rights reserved

Step 8: Simulation

EMPIRE XPU

- Click "Start Simulation", OK
- After simulation started, the simulation progress is shown (energy vs time)
- Wait for status finished
- Switch to 2D Results
- Click Reload Data

Comments:

- The following will be executed
 - Automatic Meshing and saving the input file
 - Preprocessing (creating simulation files and folders)
 - Statistics and Memory estimation (Simulation Tab, log window)
 - Compilation (creating the source code)
 - Running the simulation and displaying the voltage time series
 - Postprocessing (DFT, Far field, ...)

Step 9: Results

Plot Type Voltage (Time Domain)

• Plot Type S-Parameters

Comments:

- Format depends on selected type, e.g. dB or lin
- Right click to open a context menu in Legend or Plot area to adjust file selection or plot range

11 Jan-20 © IMST GmbH - All rights reserved

Step 10: Far field

- Plot Type: Far Field 🛰
- Plot Format: Polar Lin.
 Magnitude
- Select Component "eabs"
- Right click "show only and autocolor"

- Select 3D Results Tab
- Switch on Field Monitor
- Right click on FIELDMON
- Edit
- Choose Plot Style
 "Wireframe", OK

Comments:

• By default, the absolute component is selected in 3D display. Select other components by choosing "Polarization"

